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We consider the problem of temperature dependence of the Gibbs states in two
spin-glass models: Derrida’s Random Energy Model and its analogue, where the
random variables in the Hamiltonian are replaced by independent standard
Brownian motions. For both of them we compute in the thermodynamic limit
the overlap distribution ;N

i=1 si s
−

i/N ¥ [− 1, 1] of two spin configurations s, sŒ

under the product of two Gibbs measures, which are taken at temperatures
T, TŒ respectively. If T ] TŒ are fixed, then at low temperature phase the results
are different for these models: for the first one this distribution is D0d0+D1d1,
with random weights D0, D1, while for the second one it is d0. We compute con-
sequently the overlap distribution for the second model whenever T − TŒ Q 0 at
different speeds as N Q ..

KEY WORDS: Gaussian processes; spin-glasses; random energy model; overlap;
Poisson point processes.

1. INTRODUCTION AND RESULTS

One of the interesting questions in the theory of spin glasses that has been
raised over the last decade is that of the sensitivity of the Gibbs states to
changes in the parameters of the model. In particular, the question whether
Gibbs states depend on the temperature in a discontinuous way has been
studied repeatedly under the name of ‘‘temperature chaos.’’ (1) Kondor (2)

and Kondor and Véguö (2) observed a chaotic behaviour in the SK model,
while Rizzo (4) found a continuous behaviour through analytic calculations.
Recent numerical studies by Billoire and Marinari (5, 6) do not seem to
show chaotic behaviour. Given the difficulties in the analysis of spin glass



models, both on the theoretical and numerical level, it appears highly
desirable to understand these phenomena qualitatively at least in solvable
models. On a heuristic level, this was recently undertaken in a paper by
Krzakala and Martin (7) in some variants of the random energy model.

In the present paper we present a mathematically rigorous analysis of
the temperature chaos phenomenon in the context of Derrida’s Random
Energy Model (REM). (8, 9) It consists of modelling the random energy
landscape as i.i.d. Gaussian random variables. Let s ¥ { − 1, 1}N be 2N spin
configurations s=(s1,..., sN), si= ± 1, i=1,..., N. Let Xs be i.i.d. stan-
dard Gaussian r.v. indexed by them. The Gibbs measure is then given as

mb, N(s)=
eb `N Xs

2NZb, N

(1)

where Zb, N — 2−N ;s ¥ { − 1, +1}N eb `N Xs is the partition function at inverse
temperature b.

While this model looks trivial and physically quite unrealistic, as all
the dependence structure of SK models is absent, it has been seen in the
past to be a very instructive toy model in which many of the phenomena
expected in spin glass models can be studied rigorously. (8–18) It exhibits a
rather rich and interesting structure which shows by explicit computation
characteristic features of a strongly disordered model. Namely, it has a
truly random limiting Gibbs measure at the low temperature phase, (16)

illustrating the concept of metastates promoted for spin glasses by Newman
and Stein. (19–21)

One of the key physical objects computed for spin glass models is the
overlap of two spin configurations s · sŒ=;N

i=1 si s
−

i. It allows to compare
two independent copies of spin configurations drawn from the Gibbs
distribution to each other, if no particular reference configuration is spe-
cified. We will now compute the overlap of two independent copies of s

drawn from the Gibbs measure at two different temperatures. We denote
for shortness by RN(s, sŒ)=;N

i=1 si s
−

i/N ¥ [− 1, 1]. Let us introduce a
random measure fb, bŒ, N on [− 1, 1] distributed as the overlap of two spin
configurations under the product of two Gibbs measures taken at inverse
temperatures b and bŒ: For any interval I … [− 1, 1] we put

fb, bŒ, N(I) —
;s, sŒ 1{RN(s, sŒ) ¥ I}eb `N Xs+bŒ `N XsŒ

22NZb, NZbŒ, N

. (2)

Its asymptotic behaviour is found in the following theorem.
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Theorem 1. Let bŒ \ b > 0. If b [ `2 ln 2, then

fb, bŒ, N 0
D d0. (3)

If b > `2 ln 2, then

fb, bŒ, N 0
D D0d0+D1d1 (4)

where D0, D1 are random variables defined as follows:

D1=
>.

−. e (a+aŒ) xP(dx)
>.

−. eaxP(dx) >.

−. eaŒxP(dx)
, (5)

D0=1 − D1 (6)

with the parameters a — b/`2 ln 2, aŒ — bŒ/`2 ln 2. P denotes the
Poisson point process on R of the intensity measure e−x dx.

For any y ¥ R P has a finite number of points on [y, .) a.s. There-
fore the random variable D1(y)=

>.

y e(a+aŒ) x
P(dx)

>.

y eax
P(dx) >.

y eaŒx
P(dx)

is well defined for any

y ¥ R. Then D1 is understood as limy a − . D1(y) which is finite a.s.

Furthermore, we investigate the same quantity in another version of
the REM taking 2N independent standard Brownian motions Xs(t) indexed
by configurations of spins s ¥ { − 1, +1}N. Then to any spin configuration
s ¥ { − 1, +1}N we assign a Gibbs measure

m̃t, N(s)=
e `N Xs(t)

2NZ̃t, N

where

Z̃t, N — 2−N C
s ¥ { − 1, +1}N

e `N Xs(t)

is a partition function. Clearly, mb, N=D
m̃t, N and Zb, N=D Z̃t, N if b=`t .

The random measure f̃t, tŒ, N on [− 1, +1] induced by the overlap under
the product of Gibbs measures in this model is defined as follows: for any
Borel subset I … [− 1, 1]

f̃t, tŒ, N(I) —
;s, sŒ: RN(s, sŒ) ¥ I e`N Xs(t)+`N XsŒ(tŒ)

22NZ̃t, N

. (7)
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But the measure f̃t, tŒ, N is distributed as fb, bŒ, N with b=`t , bŒ=`tŒ only if
t=tŒ. Otherwise its distribution is different. We prove that its asymptotic
behaviour for t > tŒ > 2 ln 2 is also different from the one of fb, bŒ, N with
b=`t , bŒ=`tŒ. This is demonstrated in the following Theorem 2: just
compare (8) with tŒ > t > 2 ln 2 and (4) with bŒ > b > `2 ln 2.

Theorem 2. For any t, tŒ > 0 such that tŒ > t we have

f̃t, tŒ, N 0
D d0. (8)

Remark. Obviously by Theorem 1 for tŒ=t [ `2 ln 2, the result (8)
remains valid. If 2 ln 2 < t=tŒ, then

f̃t, t, N 0
D D̃0d0+D̃1d1, (9)

where D̃0, D̃1 are random variables distributed as D0 and D1 respectively
with a=`t/2 ln 2.

The natural question that comes comparing (8) and (9): what would be
the asymptotics of f̃t, tŒ, N if tŒ − t=c(N) with c(N) a 0, as N ‘ .? The
following theorem gives precise asymptotics of f̃t, tŒ, N for c(N) at different
scales.

Theorem 3. Let tŒ > t > 2 ln 2. Assume that tŒ − t=c(N) with
c(N) \ 0 and limN ‘ . c(N)=0.

If limN ‘ . Nc(N)=., then

f̃t, tŒ, N 0
D d0. (10)

If limN ‘ . Nc(N)=h with h ¥ R then

f̃t, tŒ, N 0
D D̃h

0d0+D̃h
1d1, (11)

where D̃h
0 , D̃h

1 are random variables defined as follows:

D̃h
1=

>.

−. e2ãxPh/(8ã 2)(dx)
>.

−. e ãxPh/(2ã 2)(dx) >.

−. e ãxP0(dx)
(12)

D̃h
0=1 − D̃h

1 (13)

with the parameter ã=`t/2 ln 2. Pc denotes the Poisson point process on
R with the intensity measure ece−x dx.
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The point processes Ph/(8ã 2) and Ph/(2ã 2) are random translations of the
point process P0: each particle xi of P0 is shifted into xi+`h yi/2a

¥ Ph/(8ã 2) and into xi+`h yi/a ¥ Ph/(2ã 2) where yi are distributed as inde-
pendent standard Gaussian random variables.

The random variable D̃h
1(y)=

>.

ÿ e2ãx
Ph/(8ã2)(dx)

>.

y e ãx
Ph/(2ã2)(dx) >.

y e ãx
P0(dx)

is well defined for

any y ¥ R and D̃h
1 is understood as limy a − . D̃h

1(y) which is finite a.s.

Remark. Observe that in the case h=0, i.e., tŒ − t=o(1/N), the
measure f̃tŒ, t, N has the same asymptotics as the measure f̃t, t, N.

Finally, before turning to formal proofs, we would like to give some
intuition. If b or t are large, then Boltzmann weights eb `N Xs and e`N Xs(t)

are heavy-tailed random variables. As often in this case, their sums in (2)
and (7) are dominated by just one or a few terms where these random
variables are anamolously large. The origin of different results (4) and (8) is
briefly the following: in the first model the configurations s with the largest
b `N Xs among all 2N are the same at all temperatures, they constitute
essentially fb, bŒ, N(1). In the second model configurations s having the
largest Xs(t) at tempearture t do not correspond to the largest Xs(tŒ) at
temperature tŒ, thus f̃t, tŒ, N(1) vanishes.

Let us look for the maximal values of Xs. An elementary computation
shows that for a > 0 (use Proposition 2)

P(-s: Xs < a)=(1 − P(Xs \ a))2N
’ (1 − e−a 2/2/`a22p)2N

’ e−2Ne − a2/2/`a 22p (14)

which is of order 1 if a ± `2 ln 2N and 0 if a ° `2 ln 2N. Therefore
maxs Xs ’ `2 ln 2N and if we want to separate a few largest random
variables Xs we should take a=`2 ln 2N+some corrections. It is well
known in extreme values theory that the right scale of separation is given
by

a=uN(x) — `2 ln 2N+
x

`2 ln 2N
−

ln(N ln 2)+ln(4p)

2 `2 ln 2N
(15)

where a parameter x ¥ R. Then

P(-s: u−1
N (Xs) < x)=P(-s: Xs < uN(x)) ’ e−e − x

, N Q .. (16)

This last fact gives a clue to the following classical result (see, e.g., ref. 22)
which we extensively use in the paper.
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Proposition 1. Let P be the Poisson point process on R with the
intensity measure e−x dx. The point process ;s du − 1

N (Xs ) converges weakly
to P:

C
s

du − 1
N (Xs ) QP. (17)

Note that the process P contains a.s. a finite number of points in any
interval [x, .), x ¥ R, corresponding to extremal Xs while at − . points
accumulate. Now, in the standard REM we can write fb, bŒ, N(1) in terms of
this point process and separate the terms in [x, .)

fb, bŒ, N(1)=D
Zb+bŒ, N

2NZb, NZbŒ, N
=

;s e (a+aŒ) u − 1
N (Xs )

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )

=
;s e (a+aŒ) u − 1

N (Xs )1{u − 1
N (Xs ) > x}

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )
+

;s e (a+aŒ) u − 1
N (Xs )1{u − 1

N (Xs ) [ x}

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )
(18)

Since the whole sum ;s e`N bXs is determined by a few extremal Xs, then
the second term in (18) (although containing infinitly many points) has a
vanishing mass as first N Q . and then x Q − .. The first term of (18)
is not empty with probability ’ 1 − e−e − x

by (16) and converges to the
random variable D1(x) as N Q .. Now the result of Theorem 1 is obvious.

Next, let us write a similar representation for f̃t, tŒ, N(1):

f̃t, tŒ, N(1)=D
;s e`N Xs(t)+`N Xs(tŒ)

2NZ̃t, NZ̃tŒ, N

=
;s e ãu − 1

N (Xs(t)/`t)+ãŒu − 1
N (Xs(tŒ)/`tŒ)

;s e ãu − 1
N (Xs(t)/`t) ;s e ãŒu − 1

N (Xs(tŒ)/`tŒ)

=
;s e ãu − 1

N (Xs(t)/`t)+ãŒu − 1
N (Xs(tŒ)/`tŒ)1{u − 1

N (Xs(t)/`t) > x, u − 1
N (Xs(tŒ)/`tŒ) > x}

;s e ãu − 1
N (Xs(t)/`t) ;s e ãŒu − 1

N (Xs(tŒ)/`tŒ)

+
;s e ãu − 1

N (Xs(t)/`t)+ãŒu − 1
N (Xs(tŒ)/`tŒ)1{u − 1

N (Xs(t)/`t) [ x or u − 1
N (Xs(tŒ)/`tŒ) [ x}

;s e ãu − 1
N (Xs(t)/`t) ;s e ãŒu − 1

N (Xs(tŒ)/`tŒ)
.

Again, since the whole partition function is determined by a few
extremal Xs(t) then the second term of this representation gives a vanishing
contribution as N Q . and x Q .. But in this model the first term
vanishes as well as N Q . for any x ¥ R. The reason is that the change in
tempertaure modifies the order statistics of the model: the configurations s

that had the largest random variables Xs(t)/`t and determined the whole
partition function at temperature t do not have the largest Xs(tŒ)/`tŒ and
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then bring a negligible mass at temperature tŒ. In other words, the numera-
tor of the first term is empty with probability

P(-s: u−1
N (Xs(t)/`t) [ x or u−1

N (Xs(tŒ)/`tŒ) [ x). (19)

This probability is much bigger than the correponding probability (16) in
the standard REM model, where the order statistics are conserved at all
temperatures and therefore configurations s having the biggest b `N Xs

in the Hamiltonian remain with this property at all temperatures. The
probability (19) converges to 1 for any tŒ > t (see (50) below for its com-
putation).

To make it less than one, we could try to keep essentially the order
statistics taking tŒ sufficiently close to t. It turns out that tŒ should be
t+O(1/N). We can use then the representation (53) where the random
point processes involved ;s du − 1

N (Xs )+`N(tŒ − t) Ys/(2ã), ;s du − 1
N (Xs )+`N(tŒ − t) Ys/ã are

random translations of ;s du − 1
N (Xs ) with each particle shifted by inde-

pendent Gaussian random variables with variance of finite order, as
N(tŒ − t)=O(1). By an easy generalisation of Proposition 1 these point
processes converge to Poisson point processes as well with the same inten-
sity measure as P but multiplied by a constant, (see Lemma 1). This clari-
fies the statement of Theorem 3.

2. PROOFS

Proof of Theorem 1. We consider separately three cases (1) b [

bŒ [ `2 ln 2; (2) b [ `2 ln 2, bŒ > `2 ln 2; (3) bŒ \ b > `2 ln 2 and show
that in all of them

(i) for any I … [− 1, 1) such that [− d, d] …̂ I for some d > 0
fb, bŒ, N(I) Q 0 in probability as N ‘ .;

and that in cases (1) and (2)

(ii) fb, bŒ, N(1) Q 0 in probability as N ‘ ..

First of all, let us mention that EeaX=ea 2/2 where X is a standard
Gaussian r.v., whence E Zb, N=eb

2N/2. We extensively use Theorem 4 from
the Appendix, which is borrowed from Bovier et al. (15): there the fluctua-
tions of the partition function in the REM are found at all temperatures.

We start with (i) in case (1). Let us write

fb, bŒ, N(I)=
;s, sŒ: RN(s, sŒ) ¥ I eb `N Xs+bŒ `N XsŒ

22Neb
2N/2+bŒ

2N/2
×

eb
2N/2+bŒ

2N/2

Zb, NZbŒ, N
. (20)
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The second factor in (20) converges in probability to 1 if bŒ < `2 ln 2, to 2
if b < bŒ=`2 ln 2, and to 4 if b=bŒ=`2 ln 2. This follows from the
convergence of Zb, N/eb

2N/2 and ZbŒ, N/ebŒ
2N/2 to 1 or 1/2 by (61)–(64). Since

1 ¨ I, then in all terms of the sum in the numerator of the first factor of
(20) s ] sŒ, i.e., Xs and XsŒ are independent. Thus the expectation of each
of these terms in the sum equals eb

2N/2+bŒ
2N/2 and the expectation the whole

first factor in (20) is P(RN(s, sŒ) ¥ I) where P( · ) is the uniform probability
measure on pairs of spin configurations s, sŒ ¥ { − 1, 1}N. By Stirling’s
formula, for any m ¥ (−1, 1) P(RN(s, sŒ)=m)= 2

`2p(1+m)(1 − m) N
e−Nj(m) ×

(1+o(1)) with j(m)=[(1+m) ln(1+m)+(1 − m) ln(1 − m)]/2. More-
over, there exists c(d) > 0 such that j(m) > c(d) > 0 for all m with |m| > d.
Hence, due to the fact [− d, d] ¨ I, P(RN(s, sŒ) ¥ I) Q 0 as N ‘ . and (i)
in case (1) is proved. To show (ii), let us first consider the subcase of
b < `2 ln 2. Then one can fix e > 0 such that be − bŒ < 0 and bbŒ −
(be − bŒ)2/2 − ln 2 < 0. We may write

fb, bŒ, N(1)=
;s e (b+bŒ) `N Xs 1{Xs < b(1+e) `N}

22Neb
2N/2+bŒ

2N/2
×

eb
2N/2+bŒ

2N/2

Zb, NZbŒ, N

+
;s e (b+bŒ) `N Xs 1{Xs \ b(1+e) `N}

22Neb
2N/2ZbŒ, N

×
eb

2N/2

Zb, N
. (21)

The second factors in two terms of this decomposition converge to 1 or 2
in probability by (61)–(64). The expectation of the first factor in the first
term can be estimated by use of the elementary Proposition 2 from the
Appendix:

;s Ee (b+bŒ) `N Xs 1{Xs < b(1+e) `N}

22Neb
2N/2+bŒ

2N/2
[

e (b+bŒ)2N/2 − (b(1+e) − (bŒ+b))2 N/2

2Neb
2N/2+bŒ

2N/2
`2pN(bŒ − be)

[ e (bbŒ − (be − bŒ)2/2 − ln 2) N
Q 0 (22)

as N ‘ . due to the appropriate choice of e > 0. The expectation of the
first factor in the second term of (21) does not exceed

C
s

Eeb `N Xs 1{Xs \ b(1+e) `N}/(2Neb
2N/2)=P(X > be `N) Q 0

with X a standard Gaussian r.v. Hence, (21) converges to zero in probabil-
ity. To finish the proof of the theorem in case (1), it remains to analyse
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fb, bŒ, N(1) for b=bŒ=`2 ln 2 . In this case we will truncate the Hamilto-
nian by the value uN(0) defined in (15):

f`2 ln 2 , `2 ln 2 , N(1)=
;s e2 `2 ln 2 `N Xs 1{Xs < uN(0)}

22Ne2 ln 2N
×

e2 ln 2N

(Z`2 ln 2 , N)2

+
;s e2 `2 ln 2 `N Xs 1{Xs \ uN(0)}

22Ne ln 2NZ`2 ln 2 , N

×
e ln 2N

Z`2 ln 2 , N
. (23)

The second factors in two terms of this representation converge to 4 and 2
in probability by (64). The expectation of the first factor in the first term
estimated by Proposition 2 is of the order O(1/N). The first factor in the
second term is smaller than

;s e `2 ln 2 `N Xs 1{Xs \ uN(0)}

2Ne ln 2N
=e−[ln(N ln 2)+ln 4p]/2 C

s

eu − 1
N (Xs )1{u − 1

N (Xs ) \ 0}.

By (17) the last sum converges in law to the a.s. finite integral >.

0 exP(dx)
over the Poisson point process with the intensity measure e−x dx, since P

has a finite number of points in [0, .) a. s. Then the prefactor in front
of the order O(1/`N) makes the whole factor converge to zero. This
completes the proof in case (1).

Let us proceed with case (2). Given arbitrary e > 0, ẽ > 0, one can find
x < 0 sufficiently large by absolute value and the number N0 such that for
any I … [− 1, 1] and all N \ N0

P 1;s, sŒ: RN(s, sŒ) ¥ I eb `N Xs+bŒ `N XsŒ 1{XsŒ < uN(x)}

22NZb, NZbŒ, N

> e2 < ẽ. (24)

Namely, the probability (24) is not bigger than

P 1;sŒ ebŒ `N XsŒ 1{XsŒ < uN(x)}

2NZbŒ, N

> e2=P 1;sŒ eaŒu − 1
N (XsŒ )1{u − 1

N (XsŒ ) < x}

;sŒ eaŒu − 1
N (XsŒ )

> e2 (25)

with aŒ=bŒ/`2 ln 2 > 1. Note that the convergence (65) with b > `2 ln 2
and a — b/`2 ln 2 reads:

e−N(b `2 ln 2 − ln 2)+a(ln(N ln 2)+ln 4p)/2Zb, N=C
s

eau − 1
N (Xs )

0
D F

.

−.

eazP(dz) (26)

where the integral is understood as an a.s. finite limy a − . >.

y eazP(dz). Then
for any ẽ > 0 there exists K(ẽ) such that the denominator in (25) is smaller
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than K(ẽ) with probability smaller than ẽ/2 for all N large enough. This
yields the upper bound

P 1;sŒ eaŒu − 1
N (XsŒ )1{u − 1

N (XsŒ ) < x}

;sŒ eaŒu − 1
N (XsŒ )

> e2 [ P 1;sŒ eaŒu − 1
N (XsŒ )1{u − 1

N (XsŒ ) < x}

K(ẽ)
> e2+ẽ/2

[
E ;sŒ eaŒu − 1

N (XsŒ )1{u − 1
N (XsŒ ) < x}

eK(ẽ)
+ẽ/2 (27)

where in the last line Chebyshev’s inequality is applied. Finally let us esti-
mate the expectation above by Proposition 2: for all N > 0 and all x < 0

E C
sŒ

eaŒu − 1
N (XsŒ )1{u − 1

N (XsŒ ) < x}

[
eN(bŒ − `2 ln 2)2/2+aŒ(ln(N ln 2)+ln 4p)/2e−(uN(x) − bŒ `N)2/2

`2p (bŒ `N − uN(x))
[

e (aŒ − 1) x

`2p(aŒ − 1)
a 0

(28)

as x a − . with aŒ=bŒ/`2 ln 2 > 1. Choosing x < 0 sufficiently large by
absolute value we have (24).

Once x < 0 large enough by absolute value is fixed, one can consider
fb, bŒ, N(I) with XsŒ truncated by uN(x). For any I ¥ [− 1, 1)

;sŒ ebŒ `N XsŒ 1{XsŒ > uN(x)}

2NZbŒ, N

;s: RN(s, sŒ) ¥ I eb `N Xs

2NZb, N

=
;sŒ eaŒu − 1

N (XsŒ )1{u − 1
N (XsŒ ) > x}

;sŒ eaŒu − 1
N (XsŒ )

;s: RN(s, sŒ) ¥ I eb `N Xs

2NZb, N

[ C
sŒ

1{u − 1
N (XsŒ ) > x}

1;s: RN(s, sŒ) ¥ I eb `N Xs

2Neb
2N/2

×
eb

2N/2

Zb, N

2 . (29)

If [− d, d] …̂ I for some d > 0, then for any sŒ the term in round brackets
converges to zero in probability. In fact, the second factor converges to 1
or 2 in probability by (61)–(64). The expectation of the first one equals the
probability P(;N

i=1 si ¥ I) where P( · ) denotes the uniform probability
measure on 2N spin configurations. This probability can be evaluated by
Stirling’s formula and converges to zero by the same arguments as in case
(1) provided that [− d, d] ¨ I. Furthermore, for any e > 0 one can find an
integer K such that for all N large enough the sum (29) over sŒ contains
more than K terms with probability smaller than e. This is implied by the
process convergence (17) together with the fact that P has a.s. a finite
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number of points on the interval [x, .) for any x ¥ R. Then the sum (29)
converges to zero in probability and (i) in case (2) is proved.

To prove (ii), let us make the estimate

;s e (b+bŒ) `N Xs 1{Xs ) > uN(x)}

22NZb, NZbŒ, N

[
;s eb `N Xs 1{Xs ) > uN(x)}

2Neb
2N/2

×
eb

2N/2

Zb, N
. (30)

Again the second factor in (30) converges to 1 or 2 in probability by
(61)–(64). The expectation of the first one equals P(X > uN(x) − b `N) Q 0
as N Q . if b < `2 ln 2, where X is a standard Gaussian r.v. Finally, if b=
`2 ln 2, we rewrite the first factor as e−[ln(N ln 2)+ln 4p]/2 ;s eu − 1

N (Xs )1{u − 1
N (Xs ) \ 0}.

It converges to zero in probability due to the prefactor as it was already
noticed in case (1).

Let us turn to case (3). For any e, ẽ > 0 one can find x < 0 large
enough by absolute value and N0 such that for all N \ N0

P 1;s, sŒ: RN(s, sŒ) ¥ I eb `N Xs+bŒ `N XsŒ 1{XsŒ < uN(x) or Xs < uN(x)}

22NZb, NZbŒ, N

> e2 < ẽ. (31)

This is derived analogously to (24): the probability (31) is not bigger then
the sum of the probabilities (25) where in both of them e/2 replaces e and
in one of them a replaces aŒ. Both of these probabilities are treated as (25),
since a, aŒ > 1.

To prove (i), we are left to show that

;s, sŒ: RN(s, sŒ) ¥ I eb `N Xs+b `N XsŒ 1{XsŒ > uN(x)}1{XsŒ > uN(x)}

22NZb, N, ZbŒ, N

(32)

converges to zero in probability as N ‘ .. But the probability that
the numerator of (32) is not empty has the upper bound
;s, sŒ: RN(s, sŒ) ¥ I P(XsŒ > uN(x), Xs > uN(x)). Since 1 ¨ I, then Xs and XsŒ are
independent in all terms of this sum and P(XsŒ > uN(x), Xs > uN(x))=
P(XsŒ > uN(x)) P(Xs > uN(x))=2−2Ne2x(1+o(1)). Thus the numerator of
(32) is not empty with probability at most ;s, sŒ: RN(s, sŒ) ¥ I 2−2Ne2x(1+o(1))
=e2x(1+o(1)) P(RN(s, sŒ) ¥ I) Q 0 as N Q . if [− d, d] …̂ I for some
d > 0. The assertion (i) in case (3) is proved.

To complete the proof of the theorem let us prove (5). First of all, let
us observe the equality in law:

fb, bŒ, N(1)=D
Zb+bŒ, N

2NZb, NZbŒ, N
=

;s e (a+aŒ) u − 1
N (Xs )

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )
(33)
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and decompose (33) into two terms fb, bŒ, N(1) — I1
N(y)+I2

N(y) where

I1
N(y) —

;s e (a+aŒ) u − 1
N (Xs )1{u − 1

N (Xs ) > y}

;s eau − 1
N (Xs )1{u − 1

N (Xs ) > y} ;s eaŒu − 1
N (Xs )1{u − 1

N (Xs ) > y}

(34)

I2
N(y) —

;s e (a+aŒ) u − 1
N (Xs )

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )
− IN

1 (y). (35)

Let us decompose in the same way the r.h.s. of (5)
>.

−. e(a+aŒ) x
P(dx)

>.

−. eax
P(dx) >.

−. eaŒx
P(dx)

—

I1(y)+I2(y) where

I1(y)=
>.

y e (a+aŒ) xP(dx)
>.

y eaxP(dx) >.

y eaŒxP(dx)
, (36)

I2(y)=
>.

−. e (a+aŒ) xP(dx)
>.

−. eaxP(dx) >.

−. eaŒxP(dx)
− I2(y) (37)

Taking into account the obvious inequality

F
.

y
e (a+aŒ) xP(dx) [ F

.

y
eaŒxP(dx) F

.

y
eaxP(dx)

one can estimate for any yŒ < y the difference

|I1(yŒ) − I1(y)| [
>y

yŒ e (a+aŒ) xP(dx)
>.

yŒ eaxP(dx) >.

yŒ eaŒxP(dx)
+

>y
yŒ eaŒxP(dx)

>.

yŒ eaŒxP(dx)
+

>y
yŒ eaxP(dx)

>.

yŒ eaŒxP(dx)
.

(38)

The denominator in (38) can not be too small with large enough probabil-
ity: For any h > yŒ

P 1F
.

yŒ

eaxP(dx) < eha2 [ P(-x ¥ P: x ¨ [h, .))=e−e − h
.

Then applying Chebyshev’s inequality combined with the fact E >y
−. eazP(dz)

=e (a − 1) y/(a − 1), we obtain the bound

P(|I1(y) − I1(yŒ)| > e) [ 2e−e − h
+

e−h(a+aŒ)e (a+aŒ − 1) y

(a+aŒ − 1) e
+

e−hae (a − 1) y

(a − 1) e
+

e−haŒe (aŒ − 1) y

(aŒ − 1) e
.

(39)
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Let us choose h=dy with d > 0 such that a − 1 − da > 0 and aŒ − 1 − daŒ

> 0. Then the bound (39) goes to zero exponentially fast as y a − .. By
Borel–Cantelli lemma there exists limy a − . I1(y) a.s. and the definition of
the random variable D1 is justified. To proceed with the convergence (5),
we use

C
s

e (a+aŒ) u − 1
N (Xs )1{u − 1

N (Xs ) > y} [ C
s

eau − 1
N (Xs )1{u − 1

N (Xs ) > y} C
s

eaŒu − 1
N (Xs )1{u − 1

N (Xs ) > y}

to get the estimate

|I2
N(y)| [

;s e (a+aŒ) u − 1
N (Xs )1{u − 1

N (Xs ) < y}

;s eau − 1
N (Xs ) ;s eaŒu − 1

N (Xs )

+
;s eaŒu − 1

N (Xs )1{u − 1
N (Xs ) < y}

;s eaŒu − 1
N (Xs )

+
;s eau − 1

N (Xs )1{u − 1
N (Xs ) < y}

;s eau − 1
N (Xs )

(40)

Due to the convergence (26) for any ẽ > 0 one can find K(ẽ) such that the
denominator in one of terms in the bound (40) is smaller than K(ẽ) with
probability at most ẽ/2 for all sufficiently large N. Then by Chebyshev’s
inequality and the bound (28)

P(I2
N(y) > e) [ ẽ/2+P 1C

s

e (a+aŒ) u − 1
N (Xs )1{u − 1

N (Xs ) < y} > eK(ẽ)/32

+P 1C
s

eaŒu − 1
N (Xs )1{u − 1

N (Xs ) < y} > eK(ẽ)/32

+P 1C
s

eau − 1
N (Xs )1{u − 1

N (Xs ) < y} > eK(ẽ)/32

[ 3e−1K−1(ẽ)(e(a+aŒ − 1) y/(a+aŒ − 1)

+e (a − 1) y/(a − 1)+e(aŒ − 1) y/(aŒ − 1))+ẽ/2. (41)

It follows that for any pair e, ẽ > 0 one can find y < 0 sufficiently large by
absolute value and N0 such that for all N \ N0

P(I2
N(y) > e) < ẽ. (42)

One shows in the same way as (39) that for any pair e, ẽ > 0 there exists
y < 0 such that

P(I2(y) > e) < ẽ. (43)
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The term I1
N(y) is a functional of the point process ;s du − 1

N (Xs ). By (17) this
process converges weakly to the Poisson point process P of the intensity
measure e−x dx. The process P has a.s. a finite number of points on [y, .)
for all y ¥ R. This implies that

I1
N(y) 0D I1(y) -y ¥ R. (44)

The arguments (42), (43) and (44) together yield the convergence in law (5).
This concludes the proof of the theorem.

Proof of Theorem 2. To investigate the asymptotics of f̃t, tŒ, N for
tŒ > t we again study separately three cases (1) t < tŒ [ 2 ln 2; (2) t [ 2 ln 2,
tŒ > 2 ln 2; (3) tŒ > t > 2 ln 2. We prove that in all of them

(i) for any I … [− 1, 1) such that [− d, d] …̂ I for some d > 0
f̃t, tŒ, N(I) Q 0 in probability as N ‘ .;

(ii) f̃t, tŒ, N(1) Q 0 in probability as N ‘ ..

The proof of (i) mimics the proof of the corresponding assertion in
Theorem 1 since Xs(t) is distributed as `t Xs for all s and Xs(t) and
XsŒ(t) are independent under s · sŒ ] 1. Let us concentrate on (ii). In case
(1) we fix e > 0 such that t − (`t e − `t)2/2 − ln 2 < 0 and write the
decomposition of f̃t, tŒ, N(1) analogous to (21):

f̃t, tŒ, N(1)=
;s e `N (Xs(t)+Xs(tŒ))1{Xs(t) < t(1+e) `N}

22Ne tN/2+tŒN/2
×

e tN/2+tŒN/2

Z̃t, NZ̃tŒ, N

+
;s e `N (Xs(t)+Xs(tŒ))1{Xs(t) \ t(1+e) `N}

22Ne tN/2Z̃tŒ, N

×
e tN/2

Z̃t, N

. (45)

Here Xs(tŒ)=Xs(t)+(Xs(tŒ) − Xs(t)) where Xs(t) and (Xs(tŒ) − Xs(t)) are
independent standard Gaussian r.v. with variances `t and `tŒ − t respec-
tively. We observe that the expectation of the first factor in the first term
converges to zero

;s Ee `N (Xs(t)+Xs(tŒ))1{Xs(t) < t(1+e) `N}

22Ne tN/2+tŒN/2

[
e2tN − (`t (1+e) − 2 `t)2 N/2+(tŒ − t) N/2

2Ne tN/2+tŒN/2
`2pN(−`t (1+e)+2 `t)

[ e (t2 − (`t e − t)2/2 − ln 2) N
Q 0. (46)
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The analysis of the second factor in the first term and of the whole second
term of (45) is carried out similarly to Theorem 1 proving f̃t, tŒ, N(1) Q 0
in this case. The proof of (ii) in case (2) is completely similar to the one in
Theorem 1. Note only that XsŒ(t) should be truncated by `t uN(x) with
x < 0 large enough by absolute value.

Let us consider case (3). In this case for any given pair e, ẽ > 0, one
can choose x < 0 sufficiently large by absolute value and the number N0

such that for any I ¥ [− 1, 1] and all N \ N0

P 1;s, sŒ: RN(s, sŒ) ¥ I e `N Xs(t)+`N XsŒ(tŒ)1{Xs(t) < `t uN(x) or XsŒ(tŒ) < `tŒ uN(x)}

22NZ̃t, NZ̃tŒ, N

> e2 < ẽ.
(47)

In fact, the probability (47) is not bigger than the sum

P1;s e`N Xs(tŒ)1{Xs(tŒ) < `tŒ uN(x)}

2NZ̃tŒ, N

> e/22+P1;s e`N Xs(t)1{Xs(t) < `t uN(x)}

2NZ̃t, N

> e/22

=P 1;s eau − 1
N (Xs )1{u − 1

N (Xs ) < x}

;s eau − 1
N (Xs )

> e/22

+P 1;s eaŒu − 1
N (Xs )1{u − 1

N (Xs ) < x}

;s eaŒu − 1
N (Xs )

> e/22 (48)

with a=`t/(2 ln 2), aŒ=`tŒ/(2 ln 2), Xs independent standard Gaussian
r.v. Both of the probabilities (48) can be treated as (25) using the estimate
(28) with a, aŒ > 1.

Once an appropriate x < 0 is fixed, we have to study the asymptotic
behaviour of

;s e`N Xs(t)+`N Xs(tŒ)1{Xs(t) \ `t uN(x), Xs(tŒ) \ `tŒ uN(x)}

;s e`N Xs(t) ;s e`N Xs(tŒ)
. (49)

The probability that the numerator in (49) is not empty equals:

P(,s: Xs(t) \ `t uN(x), Xs(tŒ) \ `tŒ uN(x))

[ C
s

P(Xs(t) \ `t uN(x), Xs(tŒ) \ `tŒ uN(x))

=2N P(`t X \ `t uN(x), `t X+`tŒ − t Y \ `tŒ uN(x))

=2N 5 1

`2p
F

.

uN(x)
e−s2/2 1 1

`2p
F

.

(`tŒ uN(x) − `t s)/`tŒ − t

e−y2/2dy2 ds6 (50)
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where X and Y are independent standard Gaussian random variables. We
prove that the bound (50) converges to zero for all tŒ > t. Let us split the
integral of (50) into two integrals I1

N and I2
N: in the first one the integration

by s is carried from uN(x) to uN(x) `tŒ/t − duN(x)(tŒ − t) with some small
d > 0 and in the second from uN(x) `tŒ/t − duN(x)(tŒ − t) to infinity. Then
in the term I1

N we have `tŒ uN(x) − `t s < 0 and Proposition 2 applies to
the inner integral. This leads to the following bound:

I1
N [

1
2p

F
uN(x) `tŒ/t − duN(x)(tŒ − t)

uN(x)

e−s2/2e−(`tŒ uN(x) − `t s)2/(2(tŒ − t))

(`tŒ uN(x) − `t s)/`tŒ − t
ds

=
e−u2

N(x)/2

`2p uN(x)

1

`2p
F

uN(x) `tŒ − t[1/`t − d `tŒ]

uN(x) `tŒ − t/(`tŒ+`t)

`tŒ e−r2/2

1 − `t r/(uN(x) `tŒ − t)
dr

[
e−u2

N(x)/2

`2p uN(x) d `t

1

`2p
F

.

uN(x) `tŒ − t/(`tŒ+`t)

e−r2/2 dr. (51)

In the term I2
N we estimate the inner integral roughly by 1 and after apply

Proposition 2 to the integral over s:

I2
N [

1

`2p
F

.

uN(x) `tŒ/t − duN(x)(tŒ − t)

e−s2/2 ds

[
e−[uN(x) `tŒ/t − duN(x)(tŒ − t)]2/2

`2p [uN(x) `tŒ/t − duN(x)(tŒ − t)]

=
e−u2

N(x)/2e−u2
N(x)(tŒ − t)[1 − 2d `tŒt+d

2t]/(2t)

`2p uN(x)[`tŒ/t − d(tŒ − t)]
. (52)

Remembering that e−u2
N(x)/2/(`2p uN(x))=2−Ne−x(1+o(1)) as N Q ., we

see that both bounds (51) and (52) are of the order o(2−N) as N Q ..
Hence, (50) converges to zero. This means that (49) does not equal zero
with probability that vanishes as N Q .. Then the proof of (ii) in case (3)
is finished and Theorem 2 is proved.

Furthermore, assume that tŒ − t=c(N) \ 0 and limN Q 0 c(N)=0 but
limN Q . Nc(N)=+., that is limN Q . u2

N(x)(tŒ − t)=+.. Consequently,
with d > 0 fixed small enough, both bounds (51) and (52) are of the order
o(2−N) as N Q .. Then (50) converges to zero and (49) is different from
zero with probability that vanishes as N Q .. This proves the assertion
(10) of Theorem 3.
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Proof of Theorem 3. The assertion (10) has been already proven at
the end of the proof of Theorem 2. To establish (12) let us note the follow-
ing equality in law

f̃t, tŒ, N(1)=D ;s e2 `Nt Xs+`N(tŒ − t) Ys

;s e`Nt Xs+`N(tŒ − t) Ys ;s e`Nt Xs

=
;s e2ã[u − 1

N (Xs )+`N(tŒ − t) Ys/(2ã)]

;s e ã[u − 1
N (Xs )+`N(tŒ − t) Ys/ã] ;s e ãu − 1

N (Xs )
(53)

where Xs, Ys are 2 · 2N independent standard Gaussian r.v. The next
Lemma 1 yields the asymptotic behaviour (54) of the associated point
process ;s du − 1

N (Xs )+`N(tŒ − t) Ys/(2ã) and the fluctuations (55) of the terms in
the numerator and in the denominator of (53). These are generalisations of
the results (17) and (65) (or equivalently (26)). The estimate (56) generalises
(28). Then (12) follows from (54), (55) and (56) by the same arguments as
(5) does from (17), (26) and (28).

Lemma 1. Let Xs, Ys be 2 · 2N independent standard Gaussian
random variables. Let b > 0, a — b/`2 ln 2. Let also c(N) be a sequence
with limN Q . c(N)=c ¥ R.

Then the point process ;s du − 1
N (Xs )+c(N) Ys

converges weakly to a cluster
point process which is a random translation of the Poisson point process P0

of the intesity measure e−x dx: each particle xi ¥ P0 is shifted into xi+cyi

where yi are distributed as independent standard Gaussian random
variables. This translated point process is distributed as Poisson point
process Pc 2/2 with the intensity measure ec 2/2e−x dx:

C
s

du − 1
N (Xs )+c(N) Ys

QPc 2/2. (54)

If b > `2 ln 2 then

e−N(b `2 ln 2 − ln 2)+a(ln(N ln 2)+ln 4p)/2 C
s

eb `N Xs+c(N) Ys

=C
s

ea[u − 1
N (Xs )+c(N) Ys/a]

0
D F

.

−.

eazPc 2/2(a 2)(dz). (55)
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The integral >0
−. eazPc 2/(2a 2)(dz) is understood as limy a − . >0

y eazPc 2/(2a 2)(dz)
which is proven to be finite a.s. Finally for any x [ 0

E C
s

ea[u − 1
N (Xs )+c(N) Ys/a]1{u − 1

N (Xs )+c(N) Ys/a < x} [
ec 2/(2a 2)e (a − 1) x

a − 1
+o(1) (56)

with o(1) uniform for all x [ 0 as N ‘ ..

Proof of Lemma 1. The process ;s du − 1
N (Xs )+c(N) Ys

is a cluster point
process (see Chapter 8 of ref. 23) with the process of centers ;s du − 1

N (Xs ) and
processes of clusters consisting of one point dc(N) Ys

. By (17) it converges to
a random transaltion stated in the lemma. As shown in Example 8.2(b)
in ref. 23, this randomly translated process is again a Poisson point
process. By formula (8.2.12) in ref. 23 its intensity measure can be com-
puted as

m(dy)=
dy

|c| `2p
F

.

−.

e−(y − x)2/(2c 2)e−x dx=e−yec 2/2 dy.

To prove (55), let us first of all note that for any xŒ < x, x, xŒ ¥ R by
Chebyshev’s inequality

P 1F
xŒ

x
eazPc 2/(2a 2)(dz) > e2 [

ec 2/(2a 2)e (a − 1) x

e(a − 1)
Q 0 as x a − .. (57)

Then by Borel–Cantelli lemma the integral in (55) is finite a.s. Next, let us
decompose

C
s

ea[u − 1
N (Xs )+c(N) Ys/a] — I1

N(x)+I2
N(x)

— C
s

ea[u − 1
N (Xs )+c(N) Ys/a]1{u − 1

N (Xs )+c(N) Ys/a < x}

+C
s

ea[u − 1
N (Xs )+c(N) Ys/a]1{u − 1

N (Xs )+c(N) Ys/a \ x}. (58)

for x ¥ R. We introduce for shortness the notation

R(N) — e−N(b `2 ln 2 − ln 2)+a(ln(N ln 2)+ln 4p)/2.
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Then

E I1
N(x)=R(N) 2N Eeb `N X+c(N) Y1{X < uN(x − c(N) Y/a)}

=
R(N) 2N

2p
F

.

−.

ec(N) y − y2/2 F
uN(x − c(N) y/a)

−.

eb `N s − s2/2 ds dy

=
R(N) 2Neb

2N/2

2p
F

N3/4

−N3/4
ec(N) y − y2/2 F

uN(x − c(N) y/a) − b `N

−.

e−r2/2 dr dy+O(e−N3/2
)

[
R(N) 2Neb

2N/2

2p
F

N3/4

−N3/4
ec(N) y − y2/2 e−(uN(x − c(N) y/a) − b `N)2/2

b `N − uN(x − c(N) y/a)
dy+O(e−N3/2

)

[
(1+o(1))

`2p(a − 1)
F

N3/4

−N3/4
ec(N) y − y2/2+(a − 1)(x − c(N) y/a) dy+O(e−N3/2

)

=
e (a − 1) x

(a − 1)
ec 2/(2a 2)(1+o(1))+O(e−N3/2

) (59)

as N Q . where o(1) is uniform for x [ 0. It follows that for any pair
e, ẽ > 0 one can find x < 0 large enough by absolute value such that for all
sufficiently large N

P(I1
N(x) > e) [

E I1
N(x)
e

< ẽ

P 1F
x

−.

eazPc 2/(2a 2)(dz) > e2 [
E >x

−. eazPc 2/(2a 2)(dz)
e

=
ec 2/(2a 2)e (a − 1) x

(a − 1) e
< ẽ.

(60)

The term I2
N(x) in the representation (58) converges to the integral

>.

x eazPc 2/(2a 2)(dz) due to the convergence (54) and the fact that Pc 2/(2a 2)

has a.s. a finite number of points in [x, .). Combined with (60), this
yields (55).

APPENDIX A

Theorem 4. Let P be the Poisson point process on R with the
intensity measure e−x dx; a — b/`2 ln 2. Let also uN(x) be the function on
R defined in (15):

Temperature Dependence of the Gibbs State 53



For all b > 0 E Zb, N=eb
2N/2.

If b < `ln 2/2, then

eN(ln 2 − b
2)/2 1 Zb, N

E Zb, N
− 120D N(0, 1). (61)

If b=`ln 2/2, then

`2 eN(ln 2 − b
2)/2 1 Zb, N

E Zb, N
− 120D N(0, 1). (62)

If `ln 2/2 < b < `2 ln 2, then

eN(`2 ln 2 − b)2/2+a(ln(N ln 2)+ln 4p)/2 1 Zb, N

E Zb, N
− 120D F

.

−.

eaz(P(dz) − e−z dz).
(63)

If b=`2 ln 2, then

e (ln(N ln 2)+ln 4p)/2 1 Zb, N

E Zb, N
−

1
2
+

ln(N ln 2)+ln 4p

4 `pN ln 2
2

0
D F

0

−.

eaz(P(dz) − e−z dz)+F
.

0
ezP(dz). (64)

If b > `2 ln 2, then

eN(b − `2 ln 2)2/2+a(ln(N ln 2)+ln 4p)/2 Zb, N

E Zb, N
0
D F

.

−.

eazP(dz). (65)

The integrals >0
−. eaz(P(dz) − e−z dz) and >0

−. eaz(P(dz) are understood as
limy a − . >0

y eaz(P(dz) − e−z dz), and limy a − . >0
y eazP(dz) which are finite

a.s.

Proof. See ref. 15.

Proposition 2. For any x > 0

e−x2/2

x
(1 − x−2) [ F

.

x
e−t2/2 dt [

e−x2/2

x
.

Proof. See ref. 24, Chapter VII, Lemma 2.
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